

Phosphorus Inputs to Lake Champlain 1990-2008 preliminary results

Robert M. Hirsch & Laura Medalie, USGS

June 7, 2010

Weighted Regression on Time, Discharge and Season (WRTDS)

- Change description, not hypothesis testing
- Decompose the record into four components
 - Time (long-term trend)
 - Discharge
 - Seasonal
 - Random
- Estimate concentration and flux, for every day using a highly flexible statistical smoothing model
- Also create results that are "free" of the particular flow history (flow-randomized)

Let's look at some data

LaPlatte River: 352 values over 19 years.

Even a clear success story is difficult to understand unless we "decompose" it.

Total Phosphorus Concentrations, LaPlatte River

Low Flow

High Flow

We can subdivide the data into low flow and high flow groups

WRTDS builds a statistical model for estimating concentration and flux for every day

- Smoothly varying coefficients
- Estimates based on year, season, and discharge

LaPlatte Total Phosphorus Spring Season Estimates Centered on May 1 of each year

WRTDS uses that statistical model to estimate concentration and flux for every day

- Aggregates to months
- Aggregates to years

LaPlatte River Total Phosphorus Concentration Annual Estimates

But, we also want estimates that are free of the flow-induced variations

We create the flow-randomized estimates for each day using the same WRTDS model.

But with flows sampled from the entire historic population of flows for that day of the year.

LaPlatte River Total Phosphorus Concentration Annual Estimates and Flow–Randomized Annual Estimates

LaPlatte River Total Phosphorus Flux Annual Estimates and Flow–Randomized Annual Estimates

Phosphorus concentration change in % per year, flow-randomized

1990 to 2000

2000 to 2008

Phosphorus flux change in % per year, flow-randomized

1990 to 2000

2000 to 2008

Aggregate phosphorus flux

Summary

- 1) The 90's presented a mix of increasing and decreasing river inputs to the Lake
- 2) From 2000-08 we see a broad pattern of decreases
- 3) Year-to-year fluctuations in yields are large compared to the trends driven by climate variability

Summary - cont'd

4) Analysis can reveal different degrees of progress between point and non-point controls

